Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars

نویسندگان

  • Charles R. Johnson
  • António Leal Duarte
  • Carlos M. Saiago
چکیده

We characterize the possible lists of ordered multiplicities among matrices whose graph is a generalized star (a tree in which at most one vertex has degree greater than 2) or a double generalized star. Here, the inverse eigenvalue problem for symmetric matrices whose graph is a generalized star is settled. The answer is consistent with a conjecture that determination of the possible ordered multiplicities is equivalent to the inverse eigenvalue problem for a given tree. Moreover, a key spectral feature of the inverse eigenvalue problem in the case of generalized stars is shown to characterize them among trees. ∗Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA ([email protected]). †Dep. de Matemática, Univ. de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal ([email protected]). This research was supported by Centro de Matemática da Universidade de Coimbra. ‡Dep. de Matemática, Fac. de Ciências e Tecnologia da Univ. Nova de Lisboa, 2829-516 Quinta da Torre, Portugal ([email protected]). Research supported in part by Fundação para a Ciência e a Tecnologia, Portugal, through the research grant SFRH/BD/899/2000. Part of the research was done while visiting the College of William and Mary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Unweighted p-center problem on extended stars

An extended star is a tree which has only one vertex with degree larger than two. The -center problem in a graph  asks to find a subset  of the vertices of  of cardinality  such that the maximum weighted distances from  to all vertices is minimized. In this paper we consider the -center problem on the unweighted extended stars, and present some properties to find solution.

متن کامل

On the spectra of reduced distance matrix of the generalized Bethe trees

Let G be a simple connected graph and {v_1,v_2,..., v_k} be the set of pendent (vertices of degree one) vertices of G. The reduced distance matrix of G is a square matrix whose (i,j)-entry is the topological distance between v_i and v_j of G. In this paper, we compute the spectrum of the reduced distance matrix of the generalized Bethe trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009